Wave-equation migration velocity analysis with extended common-image-point gathers
نویسنده
چکیده
Wave-equation migration velocity analysis (WEMVA) is an image-domain velocity model building technique based on band-limited wave propagation and designed especially for complex subsurface environments. It exploits the coherency of reflection events measured in extended images produced by a cross-correlation imaging condition with non-zero lags. Conventional approaches use either space-lags or time-lag common image gathers, in which only partial information of the extended images is used for velocity updates. We propose an WEMVA approach using the complete information from both space-lags and time-lags of extended images. With this approach, the velocity model building benefits both from the robustness of using the time-lag information and from the high resolution of using the space-lags information. Such an implementation is facilitated by using extended common-image-point gathers (CIPs) constructed sparsely along reflections and defined jointly for spaceand time-lags. These CIPs avoid the bias towards nearly-horizontal reflectors so that steeply dipping events are well preserved in the gathers and the corresponding information related to velocity can be used. Also, the computation of the extended images can be avoided in areas where the velocity is known, e.g., inside salt bodies, or areas where the signal-to-noise ratio is too low, e.g., in shadow zones. Using CIPs for WEMVA can reduce the cost of constructing extended images and offer flexibility for the velocity model building.
منابع مشابه
Angle-domain common image gathers by wave-equation migration
Shotand offset-domain common image gathers encounter problems in complex media. They can place events that come from different points in the subsurface at one subsurface location based on identical arrival times and horizontal slownesses. Angle-domain common image gathers uniquely define ray couples for each point in the subsurface, therefore each event in the data will be associated with only ...
متن کاملVelocity Inversion with an Iterative Normal Incidence Point (NIP) Wave Tomography with Model-Based Common Diffraction Surface (CDS) Stack
Normal Incidence Point (NIP) wave tomography inversion has been recently developed to generate a velocity model using Common Reflection Surface (CRS) attributes, which is called the kinematic wavefield attribute. In this paper, we propose to use the model based Common Diffraction Surface (CDS) stack method attributes instead of data driven Common Reflection Surface attributes as an input data p...
متن کاملEfficient computation of extended images by wavefield-based migration
Extended common-image-point (CIP) gathers can be constructed using wave-equation migration by preserving into the output image the non-zero spaceand timelags of the cross-correlation between the source and receiver wavefields. Correct wavefield reconstruction leads to focused events in the extended CIPs, while incorrect reconstruction leads to de-focused events that can be used for velocity mod...
متن کاملCurvilinear wave-equation angle transform: Caustics, turning rays, absence of kinematic artifacts
Migration of seismic reflection data to common image-point gathers is an integral part of both migration velocity analysis (MVA) and amplitude (AVA) analysis. Its applicability in complex geology depends on whether these gathers will be artifact free, and is related to the formation of caustics and turning ‘rays’ due to the heterogeneity of the velocity model used. Here, we discuss an angle tra...
متن کاملImage-domain waveform tomography with two-way wave-equation
We propose an image-domain velocity model building method using the two-way wave equation and extended seismic images. We show that common-image-point gathers can effectively extract velocity information from steep reflections imaged with the two-way wave propagator. Such gathers have the advantages over conventional common-image gathers that they are capable of characterizing reflections with ...
متن کامل